bài 24 trang 111 sgk toán 9 tập 1

Bài 24 trang 111 sgk Toán 9 - tập 1. Cho đường tròn (O), dây AB khác đường kính. Qua O kẻ đường vuông góc với AB, cắt tiếp tuyến tại A của đường tròn ở điểm C. a) Chứng minh rằng CB là tiếp tuyến của đường tòn. b) Cho bán kính của đường tròn bằng 15cm, AB=24cm. Tính độ Giải bài 24 tr 111 sách GK Toán 9 Tập 1. Cho đường tròn (O), dây AB khác đường kính. Qua O kẻ đường vuông góc với AB, cắt tiếp tuyến tại A của đường tròn ở điểm C. a) Chứng minh rằng CB là tiếp tuyến của đường tròn. b) Cho bán kính của đường tròn bằng 15cm, AB=24cm Môn Toán. Toán lớp 12; Toán lớp 11; Toán lớp 10; Toán lớp 9; Toán lớp 8; Toán lớp 7; Toán lớp 6. Sách Chân Trời Sáng Sạo. Chương 1: Số Tự Nhiên; Chương 2: Số Nguyên; Chương 3: Hình Học Trực Quan; Sách Kết Nối Tri Thức Với Cuộc Sống; Vật Lý. Vật lý lớp 12; Vật lý lớp 11 III. Gợi ý giải các bài tập trang 59, 60 sgk toán 7 tập 2. Để củng cố kiến thức cho các bạn học sinh, dưới đây là các bài toán cùng dạng với bài 11 trang 60 sgk toán 7 tập 2. Bài 8 – SGK Toán 7, tập 2 – Trang 59. Cho hình 11, biết rằng AB < AC. Bài 24, 25 trang 111, 112 SGK Toán 9 tập 1 - Luyện tập. Giải bài 24 trang 111; bài 25 trang 112 sách giáo khoa Toán lớp 9 tập 1 bài Luyện tập. Bài 25 Cho đường tròn tâm O có bán kính OA = R, dây BC vuông góc với OA tại trung điểm M của OA. a) Tứ giác OCAB là hình gì? Giải bài 7.17 trang 33 SGK Toán 7 tập 2 - Kết nối tri thức . Trên một mảnh đất hình chữ nhật có chiều dài 65 m, người ta định làm một bể bơi có chiều rộng là x nét, chiều dài gấp 3 lần chiều rộng. Sơ đồ và kích thước cụ thể (tính bằng mét) đươc cho trong Hình 7.1. partorsfunbi1971. Đề bàiCho đường tròn \O\, dây \AB\ khác đường kính. Qua \O\ kẻ đường vuông góc với \AB\, cắt tiếp tuyến tại \A\ của đường tròn ở điểm \C\. a Chứng minh rằng \CB\ là tiếp tuyến của đường tròn. b Cho bán kính của đường tròn bằng \15cm,\ AB=24cm\. Tính độ dài \OC\.Phương pháp giải - Xem chi tiết a Dùng dấu hiệu nhận biết tiếp tuyến Nếu một đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng ấy là một tiếp tuyến của đường tròn. Sử dụng tính chất + Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy. + Nếu một đường thẳng là tiếp tuyến của đường tròn thì nó vuông góc với bán kính đi qua tiếp điểm đó. b Sử dụng định lí Pytago \\Delta ABC\ vuông tại \A\, khi đó \BC^2=AC^2+AB^2\. Sử dụng hệ thức lượng trong tam giác vuông \\Delta ABC\, vuông tại \A\, \AH \bot BC\, khi đó \AB^2= Lời giải chi tiết a Gọi \H\ là giao điểm của \OC\ và \AB\. Vì \OH\perp AB\ nên \HA=HB\ Định lý 2 - trang 103. Suy ra \OC\ là đường trung trực của \AB\, do đó \CB=CA.\ Xét \\Delta CBO\ và \\Delta CAO\ có \CO\ chung GT \CA=CB\ cmt \OB=OA=R\ Suy ra \\Delta CBO=\Delta CAO\ \\Rightarrow \widehat{CBO}=\widehat{CAO}\. 1 Vì \AC\ là tiếp tuyến của đường tròn \O\ nên \AC\perp OA\Rightarrow \widehat{CAO}=90^{\circ}\ 2 Từ 1 và 2 suy ra \\widehat{CBO}=90^{\circ}\. Tức là \CB\ vuông góc với \OB\, mà \OB\ là bán kính của \O\. Vậy \CB\ là tiếp tuyến của đường tròn \O\. b Ta có \OA=OB=R=15;\ \\ HA=\dfrac{AB}{2}=\dfrac{24}{2}=12\. Xét tam giác \HOA\ vuông tại \H\, áp dụng định lí Pytago, ta có \OA^2=OH^2+AH^2\ \\Leftrightarrow OH^{2}=OA^{2}-AH^{2}=15^{2}-12^{2}=81\ \\Rightarrow OH=\sqrt{81}=9cm\ Xét tam giác \BOC\ vuông tại \B\, áp dụng hệ thức lượng trong tam giác vuông, ta có \OB^{2}=OC\cdot OH \Rightarrow OC=\dfrac{OB^{2}}{OH}=\dfrac{15^2}{9}=25cm.\ Cho đường tròn O, dây AB khác đường kính. Qua O kẻ đường vuông góc với AB, cắt tiếp tuyến tại A của đường tròn ở điểm C.. Bài 24 trang 111 sgk Toán 9 – tập 1 – Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn Advertisements Quảng cáo Cho đường tròn O, dây AB khác đường kính. Qua O kẻ đường vuông góc với AB, cắt tiếp tuyến tại A của đường tròn ở điểm C. a Chứng minh rằng CB là tiếp tuyến của đường tòn. b Cho bán kính của đường tròn bằng 15cm, AB=24cm. Tính độ dài OC. a Gọi H là giao điểm của OC và AB. Vì \OH\perp AB\ nên \HA=HB\, suy ra OC là đường trung trực của AB, do đó \CB=CA.\ \\Delta CBO=\Delta CAO\ \\Rightarrow \widehat{CBO}=\widehat{CAO}\. Vì AC là tiếp tuyến của đường trong O nên \AC\perp OA\Rightarrow \widehat{CAO}=90^{\circ}\. Do đó \\widehat{CBO}=90^{\circ}\. Vậy CB là tiếp tuyến của đường tròn O. b Xét tam giác HOA vuông tại H, có \OH^{2}=OA^{2}-AH^{2}\ \=15^{2}-12^{2}=81\ \\Rightarrow OH=9cm\ Xét tam giác BOC vuông tại B, có \OB^{2}=OC\cdot OH\ \\Rightarrow OC=\frac{OB^{2}}{OH}=\frac{225}{9}=25cm.\ Nhận xét. Ở câu a ta đã dùng dấu hiệu nhận biết tiếp tuyến để chứng minh CB là tiếp tuyến của đường tròn O. Ta cũng có thể dựa vào tính chất đối xứng của đường kính để chứng minh CB là tiếp tuyến. Thực vậy B và A đối xứng qua đường thẳng chứa đường kính CO, mà CA là tiếp tuyến nên CB phải là tiếp tuyến. Bài 24 trang 111, 112 Toán 9 Tập 1Giải bài 24 trang 111, 112 SGK Dấu hiệu nhận biết tiếp tuyến của đường tròn với hướng dẫn và lời giải chi tiết, rõ ràng theo khung chương trình sách giáo khoa môn Toán 9, các bài giải tương ứng với từng bài học trong sách giúp cho các bạn học sinh ôn tập và củng cố các dạng bài tập, rèn luyện kỹ năng giải môn 24 SGK Toán 9 tập 1 trang 111 112Bài 24 trang 111 112 SGK Cho đường tròn O, dây AB khác đường kính. Qua O kẻ đường vuông góc với AB, cắt tiếp tuyến tại A của đường tròn ở điểm Chứng minh rằng CB là tiếp tuyến của đường Cho bán kính của đường tròn bằng 15cm, AB = 24 cm. Tính độ dài dẫn giải- Nếu một đường thẳng là tiếp tuyến của một đường tròn thì nó vuông góc với bán kính đi qua tiếp Để nhận biết một đường thẳng là tiếp tuyến của một đường tròn ta có hai dấu hiệu sau+ Dấu hiệu 1 Đường thẳng và đường tròn chỉ có một điểm chung định nghĩa tiếp tuyến.+ Dấu hiệu 2 Đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm giải chi tiếta Gọi H là giao điểm của OC và AB, ΔAOB cân tại O OA = OB, bán kính.OH là đường cao nên cũng là đường phân AC là tiếp tuyến tại A của đường tròn O Xét tam giác OAC và tam giác OBC có”OA = OB bằng bán kính chứng minh trênOC là cạnh chung=> CB vuông góc với OB, mà OB là bán kính của đường tròn O⇒ CB là tiếp tuến của đường tròn O tại B. điều phải chứng minhb Ta cóHO vuông góc AB nên H là trung điểm của AB=> HA = BH = AB/2 = 12Xét tam giác OAH vuông tại H, áp dụng định lí Pi – ta – go ta cóXét tam giác vuông OAC có đường cao AH, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông ta cóVậy OC = 25 cm-> Bài tiếp theo Bài 25 trang 112 SGK Toán 9 tập 1-Trên đây GiaiToan đã chia sẻ Giải Toán 9 Bài 5 Dấu hiệu nhận biết tiếp tuyến của đường tròn giúp học sinh nắm chắc Chương 2 Đường tròn. Hy vọng với tài liệu này sẽ giúp ích cho các bạn học sinh tham khảo, chuẩn bị cho bài giảng sắp tới tốt hơn. Chúc các bạn học tập tốt!Lượt xem 656 Chủ đề liên quan

bài 24 trang 111 sgk toán 9 tập 1